Contoh Soal dan Pembahasan

Setelah tahu rumus-rumus lingkaran, inilah saatnya mengaplikasikan rumus tersebut ke dalam soal. Coba jawab soal tanpa scroll jawabannya, ya! Yuk, bersiap coret-coret dan simak contoh soalnya di bawah ini!

Sebuah lingkaran memiliki jari-jari 7 cm. Hitung keliling dan luas lingkaran tersebut. Gunakan π = 22/7.

Maka, keliling lingkaran tersebut adalah 44 cm dan luasnya 154 cm².

Sebuah lingkaran memiliki diameter 14 cm. Hitung keliling dan luas lingkaran tersebut. Gunakan π = 3,14.

L = 153,86 cm² atau 154 cm²

Maka, keliling lingkaran tersebut adalah 43,96 cm dan luas lingkarannya adalah 152,86 cm².

Sebuah lingkaran memiliki keliling 31,4 cm. Hitung jari-jari dan luas lingkaran tersebut. Gunakan π = 3,14.

Maka, jari-jari lingkaran tersebut adalah 5 cm dan luas lingkarannya adalah 78,5 cm².

Itu dia seluk-beluk perihal bangun datar bernama lingkaran, yang wujudnya kerap mengingatkan pada bola, uang koin, tutup botol, dan masih banyak benda-benda familiar di sekitar kita.

Nah, buat Skollamate yang ingin memperkaya ilmu Matematika dengan cara yang menyenangkan, kamu bisa menyimak pembahasannya lebih lanjut di aplikasi Skolla. Nggak cuma soal lingkaran dan matematika, tapi ada banyak materi lainnya yang bisa kamu pelajari di sana. Cek aplikasi Skolla untuk mulai belajar!

Rumus keliling lingkaran digunakan untuk menghitung panjang antara titik A di garis keliling lingkaran ke titik itu kembali. Begini cara menghitungnya dengan rumus keliling lingkaran.

Dikutip dari Pasti Bisa Matematika untuk SD/Mi Kelas VI oleh Tim Tunas Karya Guru, kamu perlu mengenal unsur lingkaran untuk menghitung keliling lingkaran. Unsur lingkaran yang digunakan dalam rumus keliling lingkaran yaitu jari-jari atau radius (r) dan diameter atau garis tengah (d).

Unsur lingkaran di antaranya:

SCROLL TO CONTINUE WITH CONTENT

- Titik pusat (titik O), yaitu titik yang terletak di tengah-tengah lingkaran- Jari-jari atau radius (r), yaitu garis dari titik pusat lingkaran ke lengkungan lingkaran- Diameter (garis tengah), yaitu garis lurus yang menghubungkan dua titik pada lengkungan lingkaran dan melalui titik pusat- Busur, yaitu garis lengkung yang terletak pada lengkungan lingkaran dan menghubungkan dua titik sebarang pada lengkungan tersebut- Tali busur, yaitu garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran- Juring, yaitu luas daerah dalam lingkaran yang dibatasi dua buah jari-jari lingkaran dan sebuah busur yang diapit kedua jari-jari lingkaran tersebut

TEMPO.CO, Jakarta - Lingkaran adalah salah satu bentuk bangun datar yang berjarak sama terhadap satu titik tertentu. Titik tertentu yang dimaksud berada tepat di tengah lingkaran yang disebut sebagai titik pusat lingkaran.

Penentuan luas dan keliling lingkaran umumnya muncul dalam mata pelajaran Matematika sejak duduk di bangku kelas empat sekolah dasar (SD). Lantas, bagaimana rumus keliling lingkaran?

Contoh soal keliling lingkaran dengan phi 22/7

Contoh soal keliling lingkaran dengan phi 22/7

Ada sebuah koin raksasa memiliki panjang jari-jari mencapai 70 cm. Kira-kira, berapa panjang keliling koin tersebut?

Karena yang diketahui jari-jari kelipatan tujuh, penghitungan keliling dilakukan menggunakan rumus Keliling Lingkaran = π x 2r dan phi 22/7, maka:

Maka, keliling koin raksasa tersebut adalah 440 cm.

Gimana, rumus keliling lingkaran dan cara menghitung keliling lingkaran cukup mudah, bukan? Yuk, perbanyak latihan dari contoh soal keliling lingkaran diatas agar makin mudah memahami materinya, ya!

Baca Juga: Sin Cos Tan dalam Trigonometri: Rumus, Tabel, dan Contoh Soal

Lingkaran adalah garis melengkung yang kedua ujungnya bertemu pada jarak yang sama dari titik pusat. Kedudukan titik-titik pada bidang datar berjarak sama dengan sebuah titik tertentu pada bidang tersebut. Titik tertentu itu disebut sebagai titik pusat lingkaran.

Lingkaran adalah bentuk yang sangat simetris. Setiap garis yang melalui pusat membentuk garis simetri refleksi dan memiliki simetri putar di sekitar pusat untuk setiap sudut.

Menurut publikasi University of Cambridge dalam nrich.maths.org, lingkaran mengandung makna simbolis. Bentuk ini sering digunakan untuk melambangkan harmoni dan persatuan.

Misalnya, pada simbol Olimpiade, terdapat memiliki lima lingkaran berkaitan dengan warna berbeda. Ini mewakili lima benua utama dunia yang bersatu dalam semangat persaingan yang sehat.

Materi geometri dalam matematika membahas lebih lanjut tentang keliling lingkaran sebagai berikut.

Contoh Soal Keliling Lingkaran Jika yang Diketahui Luasnya

1. Diketahui sebuah lingkaran memiliki luas 314 cm². Berapa kira-kira keliling dari lingkaran tersebut?Pembahasan:Diketahui:L = 314 cm²π = 3,14

Untuk menentukan keliling, dicari terlebih dahulu jari-jarinya dengan menggunakan rumus luas lingkaran:L = π x r²314 = 3,14 x r²r² = 314/3,14r² = 100r = 10

Setelah diketahui jari-jarinya 10, selanjutnya hitung kelilingnya:K = 2 x π x rK = 2 x 3,14 x 10K = 2 x 31,4K = 62,8 cm

Jadi, keliling dari lingkaran yang mempunyai luas 314 cm² adalah 62,8 cm.

2. Diketahui sebuah lingkaran mempunyai luas 1256 cm². Hitunglah berapa keliling lingkaran tersebut!Pembahasan:Diketahui:L = 1256 cm²π = 3,14

Untuk menentukan keliling, dicari terlebih dahulu jari-jarinya dengan menggunakan rumus luas lingkaran:L = π x r²1256 = 3,14 x r²r² = 1256/3,14r² = 400r = 20

Setelah diketahui jari-jarinya 10, selanjutnya hitung kelilingnya:K = 2 x π x rK = 2 x 3,14 x 20K = 2 x 62,8K = 125,6 cm

Jadi, keliling dari lingkaran yang mempunyai luas 1256 cm² adalah 125,6 cm.

Demikian yang dapat detikEdu sampaikan mengenai rumus keliling lingkaran beserta dengan contoh soalnya. Semoga bermanfaat!

Artikel ini disusun bersama

. David Jia adalah seorang Tutor Akademis dan Pendiri LA Math Tutoring, sebuah perusahaan les privat yang berbasis di Los Angeles, California. Dengan lebih dari 10 tahun pengalaman mengajar, David menangani siswa dari segala usia dan kelas dalam berbagai mata pelajaran, serta memberikan konseling penerimaan perguruan tinggi dan persiapan ujian untuk SAT, ACT, ISEE, dan banyak lagi. Setelah mencapai nilai matematika 800 yang sempurna dan nilai bahasa Inggris 690 di SAT, David dianugerahi Beasiswa Dickinson dari Universitas Miami, dan lulus dengan gelar Sarjana Administrasi Bisnis. Selain itu, David bekerja sebagai instruktur video daring untuk perusahaan buku teks seperti Larson Texts, Big Ideas Learning, dan Big Ideas Math. Artikel ini telah dilihat 49.589 kali.

Halaman ini telah diakses sebanyak 49.589 kali.

Sudut Pusat dan Keliling Lingkaran

Sudut pusat adalah sudut yang dibentuk oleh dua buah jari-jari lingkaran. Ukuran sudut pusat sama dengan dua kali sudut keliling. Sedangkan sudut keliling adalah sudut yang terbentuk dari dua buah tali busur yang berpotongan pada keliling sebuah lingkaran.

Sudut keliling lingkaran dibedakan menjadi:

Itulah macam rumus keliling lingkaran yang dapat digunakan dalam materi matematika.

KOMPAS.com - Lingkaran adalah bangun datar yang terdiri dari himpunan titik-titik yang berjarak sama terhadap suatu titik tertentu di mana titik tertentu itu dinamakan titik pusat lingkaran.

Luas lingkaran adalah luasan daerah lingkaran.

Dilansir dari buku Genius Matematika Kelas 6 SD Sesuai Kurikulum (Edisi Revisi) (2007) oleh Joko Untoro, luas dan keliling lingkaran dapat dicari dengan menggunakan rumus:

Di mana:pi = 3,14 atau r = jari-jari lingkaran

Baca juga: Cara Mencari Banyaknya Lingkaran Pada Pola Ke-50

Jari-jari lingkaran adalah setengah dari diameter lingkaran.

Maka luas dan keliling lingkaran juga dapat menggunakan rumus:

Di mana:d = diameter lingkaran

Dikutip dari buku Metode Hafalan Di Luar Kepala Rumus Matematika SMP Kelas 7, 8, 9 (2015) oleh Andrian Duratun Kausar, agar lebih mudah dalam memahami rumus luas dan keliling lingkaran, berikut contoh soal dan pembahasan mengenai rumus lingkaran:

Baca juga: Cara Mengerjakan Soal Berapa Banyak Siswa yang Gemar Sepak Bola pada Diagram Lingkaran

Sebuah lingkaran memiliki diameter 28 cm. Tentukan keliling bangun tersebut!

K = π x d= x 28= 88 cm

Jadi, keliling lingkaran tersebut adalah 88 cm.

Baca juga: Cara Menghitung Luas 6 Seperempat Lingkaran dan Keliling Persegi ABCD

Tentukan keliling dan luas lingkaran dengan jari-jari 21 cm!

Diketahui lingkaran dengan r = 21 cm.

Keliling lingkaran = 2 π r = 2 x x 21= 2 x 22 x 3= 132 cm

Luas lingkaran = π x r²= x 21 x 21= 22 x 3 x 21= 1.386 cm²

Jadi, keliling lingkarannya adalah 132 cm, dan luas lingkarannya adalah 1.386 cm².

Baca juga: Cara Mencari Garis Singgung Lingkaran yang Sejajar dan Tegak Lurus dengan Garis

Sebuah lingkaran mempunyai jari-jari 7 cm. Hitunglah luasnya jika r = .

Luas lingkaran = π x r x r= x 7 x 7= 22 x 7= 154 cm²

Jadi, luas lingkaran adalah 154 cm².

Baca juga: Cara Mencari Jari-jari Lingkaran Luar Segitiga

Garis tengah lingkaran 28 cm. Hitung luas lingkaran tersebut!

Jari-jari = ½ diameter (garis tengah)r = ½ x 28= 14 cm

Luas lingkaran = π x r x r= x 14 x 14= 44 x 14

Jadi, luas lingkarannya 616 cm².

Itulah penjelasan mengenai rumus keliling dan luas lingkaran, beserta contoh soalnya.

Baca juga: Cara Menghitung Luas dan Keliling Lingkaran pada Soal Matematika

Bangun datar merupakan salah satu materi yang sering muncul pada mata pelajaran Matematika. Bangun datar terdiri dari persegi, persegi panjang, segitiga, lingkaran, dan lain sebagainya. Setiap bangun datar yang ada, memiliki rumus luas dan keliling yang berbeda-beda. Lantas, apa ya rumus keliling lingkaran?

Sebelum membahas lebih jauh mengenai rumus keliling lingkaran, ada baiknya mengetahui apa itu lingkaran, lalu bagaimana unsur dan sifat-sifatnya. Berikut ini penjelasannya yang berhasil detikEdu rangkum.

Lingkaran bisa dipahami sebagai suatu garis lengkung, yang kedua ujung dan titiknya, terletak pada garis lengkung tersebut dengan jarak yang sama terhadap suatu titik tertentu. Lingkaran bisa diartikan sebagai sekumpulan titik-titik yang tidak terhingga, mempunyai jarak yang sama pada titik tertentu.

SCROLL TO CONTINUE WITH CONTENT

Dikutip melalui buku berjudul Geometri dan Pengukuran Berbasis Pendekatan Saintifik karya Toybah, dkk (2020), Lingkaran adalah himpunan dari titik-titik yang memiliki jarak sama terhadap suatu titik tertentu. Jarak tersebut disebut dengan jari-jari lingkaran.

Sedangkan, titik pusat tertentu bisa disebut sebagai titik pusat lingkaran. Berikut ini unsur-unsur dan sifat-sifat pada lingkaran.

Contoh Soal Keliling Lingkaran 1

Keliling lingkaran dengan jari-jari 14 cm adalah...

a. 22 cmb. 44 cmc. 88 cmd. 110 cm

Jari-jari = r = 14 cmKeliling lingkaran = 2πrK = 2 x (22/7) x 14 cmK = 88 cm

Maka jawaban yang benar adalah C.

Rumus Keliling Lingkaran

Keliling lingkaran dapat dihitung dengan mengetahui nilai Pi (π) dan jari-jari atau radius lingkaran (r) atau diameter lingkaran (d). Rumus keliling lingkaran adalah K = 2πr atau K = πd. K merupakan lambang keliling lingkaran. Sedangkan nilai π yaitu 22/7 atau 3,14.

Jika diketahui diameter, maka rumus keliling lingkaran adalah K = πd

Jika diketahui jari-jari, maka rumus keliling lingkaran adalah K = 2πr

Contoh Soal Keliling Lingkaran Jika yang Diketahui Diameternya

1. Diketahui sebuah lingkaran memiliki diameter 42 cm. Tentukan berapa keliling lingkaran tersebut!Pembahasan:Diketahui:d = 42 cmπ = 22/7

K = π x dK = 22/7 x 42 cmK = 132 cm

Jadi, keliling dari lingkaran dengan diameter 42 cm adalah 132 cm.

2. Hitunglah berapa keliling lingkaran yang memiliki diameter 28 cm!Pembahasan:Diketahui:d = 28 cmπ = 3,14

K = π x d K = 3,14 x 28 cmK = 87,92 cm

Jadi, keliling dari lingkaran dengan diameter 28 cm adalah 87,92 cm.

Unsur-unsur Lingkaran

Yang termasuk dalam unsur-unsur lingkaran antara lain:

Titik pusat merupakan titik tengah pada diameter lingkaran.

Diameter merupakan ruas garis yang bisa menghubungkan dua titik berbeda pada lingkaran melalui pusat lingkaran.

Jari-jari merupakan jarak antara titik pusat dengan sisi lingkaran.

Busur lingkaran merupakan suatu garis lengkung dari keliling lingkaran.

Tali busur merupakan garis yang menghubungkan dua titik lingkaran, namun tidak melalui pusat lingkaran.

Juring merupakan permukaan lingkaran yang dibatasi dengan jari-jari.

Tembereng merupakan permukaan lingkaran yang dibatasi dengan busur dan tali busur.

Apotema adalah jarak di antara dua titik pusat lingkaran dan tali busur.

Rumus Keliling Lingkaran

Merujuk pada Buku Kumpulan 100 Soal Hots dan Pembahasan Bangun Datar dari Penerbit CV Madani Jaya, lingkaran mempunyai sifat-sifat meliputi terdapat sebuah titik pusat, terdiri dari satu sisi, tidak memiliki titik sudut dan jumlah sudutnya 360 derajat, mempunyai jari-jari (r) dan diameter (d), serta simetri lipat dan simetri putar tidak terhingga.

Baca berita dengan sedikit iklan, klik di sini

Adapun rumus keliling lingkaran sebagai berikut: