Mulai Belajar Menjadi Data Scientist dari Sekarang!

Tahukah kalian bahwa data scientist kini sangat banyak diminati oleh berbagai kalangan. Data scientist merupakan profesi terseksi di abad ini serta gaji dan jenjang karirnya pun cukup menjanjikan. Jadi, Untuk mengetahui lebih lanjut terkait data scientist kita dapat mempelajarinya di DQLab lohh. Caranya sangat mudah, yaitu cukup signup di DQLab dan nikmati momen belajar gratis bersama DQLab dengan mengakses module gratis dari R, Python atau SQL!

Penulis : Latifah Uswatun Khasanah

Editor : Annissa Widya Davita

Beberapa tahun terakhir, banyak yang mulai mempelajari Machine Learning. Hal ini tidak lepas dari perkembangan teknologi komputasi dan penyimpanan data yang semakin murah. Namun tidak semua orang mengerti apa itu Machine Learning. Ada beberapa pertanyaan yang sering disampaikan:

Sekarang, mari kita ambil kesimpulan dari percakapan berikut:

Secara definisi, machine learning atau pembelajaran mesin adalah ilmu atau studi yang mempelajari tentang algoritma dan model statistik yang digunakan oleh sistem komputer untuk melakukan task tertentu tanpa instruksi eksplisit. Machine learning bergantung pada pola dan kesimpulan. Untuk mendapatkan pola dan kesimpulan tersebut, algoritma machine learning menghasilkan model matematika yang didasari dari data sampel yang sering disebut dengan ‘training data.’

AI ini mengacu pada prosedur pemrograman komputer (machine) untuk mengambil suatu yang rasional. Apa itu rasional? Rasional adalah dasar dalam mengambil keputusan

Sebagai contoh, AI digunakan untuk memeriksa apakah parameter tertentu dalam sebuah program berperilaku Normal. Misalnya, mesin dapat menimbulkan alarm jika parameter mengatakan ‘X’ melintasi ambang batas tertentu yang pada gilirannya dapat mempengaruhi hasil proses terkait.

Machine Learning adalah subset dari AI dimana mesin dilatih untuk belajar dari pengalaman masa lalu. Pengalaman masa lalu dikembangkan melalui data yang dikumpulkan, kemudian menggabungkan dengan algoritma (seperti Naïve Bayes, Support Vector Machine (SVM)) untuk memberi hasil akhir.

Statistik adalah cabang matematika yang memanfaatkan data baik dari keseluruhan populasi atau sampel untuk melakukan analisis dan menyajikan kesimpulan. Beberapa teknik statistik yang digunakan adalah regresi, varians, standar deviasi, probabilitas bersyarat dan lainnya.

Mari kita pahami dari contoh berikut. Misalkan, saya perlu memisahkan kiriman di inbox email saya menjajdi dua kategori, yaitu ‘spam’ dan ‘penting’. Untuk mengidentifikasi email spam, saya dapat menggunakan algoritma Machine Learning yang dikenal sebagai Naïve Bayes yang akan memeriksa frekuensi kiriman spam masa lalu. Untuk mengidentifikasi email baru sebagai spam, Naïve Bayes menggunakan teori statistik Baye’s Theorem (umumnya dikeal sebagai probabilitas bersyarat). Oleh karena itu, kita dapat mengatakan algoritma Machine Learning menggunakan konsep statistik untuk melakukan pembelajaran mesin.

Deep Learning dikaitkan dengan algoritma jaringan saraf tiruan –  Artificial Neural Network (ANN) yang menggunakan konsep otak manusia untuk memudahkan pemodelan fungsi yang berubah-ubah. ANN membutuhkan sejumlah besar data dan algoritma ini sangat fleksibel dalam hal menghasilkan bayak keluaran secara bersamaan. Baca artikel mengenal deep learning!

Data Mining digunakan untuk mencari informasi yang spesifik, sedangkan Machine Learning berkonsentrasi untuk melakukan tugas tertentu. Sebagai contoh untuk membantu perbedaan antara Machine Learning dan Data Mining, mengajar seorang cara menari adalah Machine Learning, sedangkan menggunakan seseorang untuk mencari pusat tarian terbaik di kota adalah Data Mining.

Machine Learning melibatkan proses struktural dimana setiap tahap membangun versi mesin yang lebih baik. Untuk penyederhanaan, proses Machine Learning bisa dibagi menjadi 3 bagian:

Sebagai contoh: Supervised Learning digunakan saat perusahaan pemasaran mencoba untuk mengetahui pelanggan mana yang cenderung berpindah atau mencari supplier lain. Algoritma ini juga bisa digunakan untuk memprediksi kemungkinan terjadinya bahaya seperti gempa bumi, tornaod dan lain-lain, dengan tujuan untuk mengetahui Total Nilai Asuransi. Beberapa conntoh algoritma yang digunakan adalah: Nearest Neighbour, Naïve Bayes, Decision Tree, Regression, dan lain-lain.

Untuk membedakan antara Supervised Learning dan Reinforcement Learning, dapat dicontohkan, sebuah mobil menggunakan Reinforcement learning untuk membuat keputusan rute mana yang harus ditempuh, kecepatan berapa yang harus dikemudikan, dimanan beberapa pertanyaan tersebut diputuskan setelah berinteraksi dengan lingkungan.

Sedangkan memperkirakan ongkos taksi dari satu tempat ke tempat lain adalah Supervised Learning

Google dan Facebook adalah dua contoh perusahaan yang menggunakan Machine Learning secara ekstensif untuk mendorong iklan masing-masing ke pengguna yang relevan. Contoh penggunakan Machine Learning yang lainnya adalah :

Sumber : Article : Machine Learning basics for a newbie – www.analyticsvidhya.com

Jika Anda tertarik untuk menguasai machine learning, Anda dapat mengikuti Kelas Pelatihan Machine Learning di Inixindo Jogja.

Machine Learning: Sebuah Revolusi dalam Komputasi

Machine Learning (ML) adalah subbidang kecerdasan buatan (AI) yang memberikan kemampuan pada komputer untuk belajar dari data tanpa diprogram secara eksplisit. Istilah “belajar” dalam konteks ML bukan berarti menyerap pengetahuan melalui instruksi atau ceramah, melainkan mengacu pada proses ekstraksi pola dan wawasan secara otomatis dari kumpulan data yang besar.

Dengan memanfaatkan algoritma canggih, sistem ML dapat mengidentifikasi keterkaitan tersembunyi, memprediksi tren, dan membuat keputusan berdasarkan temuan yang diperoleh dari data. Kemampuan ini telah merevolusi berbagai industri, mulai dari perawatan kesehatan hingga keuangan, dengan mengotomatiskan tugas-tugas kompleks, meningkatkan efisiensi, dan menghasilkan wawasan yang berharga.

Semi-Supervised Learning

Data yang diolah menggunakan data berlabel dan tidak berlabel. Biasanya digunakan dengan metode klasifikasi, regresi, dan prediksi. Contoh machine learning jenis ini adalah proses identifikasi wajah seseorang pada webcam atau kamera smartphone.

Tipe Machine Learning Adalah:

Data yang diolah memiliki label. Jenis ini memiliki dua tipe yaitu klasifikasi dan regresi, jenis ini biasa digunakan pada aplikasi yang memprediksi kejadian di masa mendatang berdasarkan data historis.

Industri Transportasi dan Otomotif

Contoh machine learning pada industri transportasi dan otomotif adalah mobil dengan sistem berbasis artificial intelligence yang bisa memberi tahu pengemudi mengenai kerusakan suku cadang, petunjuk dan rute arah mengemudi, pencegahan kecelakaan hingga berbagai kondisi lainnya secara akurat.

Penerapan machine learning di industri keuangan biasanya digunakan untuk menganalisa kumpulan data dalam waktu yang relatif singkat untuk membuat proses transaksi lebih aman dan terjamin. Menggunakan machine learning juga pengelolaan keuangan bisa lebih efektif dan efisien.

Industri pertanian menjadi contoh machine learning yang paling banyak membawa manfaat. Dengan adanya machine learning, berbagai aspek di bidang pertanian bisa dioptimalkan mulai dari mendeteksi penyakit dan gulma, memprediksi kualitas dan hasil tanaman, hingga prediksi terkait produksi tanaman.

Analisis Data yang Lebih Baik

ML dan DL memberikan kekuatan pada komputer untuk “belajar” dari data tanpa pemrograman eksplisit. Dengan menganalisis pola dan hubungan dalam kumpulan data yang sangat besar, ML dan DL membantu mengekstrak wawasan yang berharga dari data yang tidak terstruktur. Pengambilan keputusan pun menjadi lebih cepat, tepat, dan efisien. Umpamanya, perusahaan ritel dapat menggunakan ML untuk memprediksi preferensi pelanggan, memberikan rekomendasi yang dipersonalisasi, dan mengoptimalkan strategi pemasaran mereka.

Contoh lain, DL berperan penting dalam pengenalan pola yang kompleks, seperti mengenali gambar, ucapan, dan teks. Teknologi ini mendukung aplikasi seperti pengenalan wajah, asisten suara, dan terjemahan bahasa. Bayangkan Anda memiliki album foto yang berisi ribuan gambar. DL dapat membantu Anda mengurutkan foto berdasarkan orang, tempat, atau benda-benda yang muncul di dalamnya, sehingga memudahkan Anda menemukan foto yang Anda butuhkan dalam sekejap.

Puskomedia sebagai perusahaan teknologi terkemuka, menyediakan layanan dan pendampingan terkait Machine Learning dan Deep Learning. Dengan keahlian kami di bidang AI dan infrastruktur digital, kami memastikan bahwa Anda memiliki akses ke teknologi terkini dan sumber daya yang diperlukan untuk memaksimalkan potensi data Anda. Mari bersama kami, raih kesuksesan Anda di era society 5.0!

Rekomendasi Tempat Belajar Machine Learning dengan Mentor Expert

Jika kamu ingin mempelajari lebih banyak mengenai machine learning, kamu bisa belajar di Bootcamp Data Science Digital Skola. Kelas data science Digital Skola cocok untuk pemula untuk mempersiapkan skill dan portofolio agar lebih siap kerja. Berikut bocoran beberapa materi yang akan diajarkan:

Tidak hanya belajar hardskill, kamu juga akan dibantu mengasah softskill, membangun portofolio, membentuk professional branding hingga mendapatkan bantuan penyaluran kerja. Cari tahu info lengkapnya dengan klik button di bawah ini!

Machine learning merupakan pembelajaran mesin yang mempelajari beberapa hal di dalamnya seperti algoritma, ilmu statistik, dan lainnya. Machine learning merupakan teknologi bagian dari Artificial Intelligence. Ketika seseorang melakukan proses pengolahan data, sebagian besar orang membutuhkan algoritma machine learning untuk menyelesaikan atau mencari solusi dari permasalahan data yang ada. Algoritma machine learning pun sangat beragam dan digunakan sesuai dengan masalah data yang sesuai.

Algoritma sendiri merupakan suatu proses langkah demi langkah yang tersusun untuk menyelesaikan permasalahan. Algoritma machine learning sendiri sangat beragam dan sudah sering digunakan untuk menyelesaikan permasalahan data dalam berbagai bidang seperti kesehatan, pendidikan, bisnis, keuangan, dan masih banyak lainnya. Kira-kira apa saja ya algoritma machine learning yang cukup sering digunakan dan bagaimana cara kerja machine learning? Yuk, simak artikel berikut ini!

Naive Bayes merupakan salah satu algoritma supervised learning yang sederhana dan cukup sering digunakan. Algoritma ini menggunakan dasar Teori Bayes di dalamnya. Algoritma ini memiliki data training (data yang sudah terdapat label kelas) dan data testing (data yang belum memiliki label kelas). Algoritma Naive Bayes bekerja dengan cara memaksimalkan nilai suatu kelas. Kelas yang memiliki probabilitas tertinggi akan masuk ke dalam salah satu dari label-label yang tersedia.

Baca juga : 3 Jenis Algoritma Machine Learning yang Dapat Digunakan di Dunia Perbankan

Jika pada algoritma supervised learning salah satu tujuan kita adalah untuk mengetahui label kelas pada data, maka pada unsupervised learning tidak berlaku demikian. K-Means merupakan salah satu algoritma supervised learning yang mana cara kerjanya adalah mengklaster atau mengelompokkan data sesuai dengan karakteristik atau kemiripan data menjadi beberapa klaster sesuai dengan nilai k yang telah ditentukan. Pada algoritma ini dibutuhkan centroid atau nilai pusat serta menghitung jarak kedekatan data dengan centroid. Algoritma ini dilakukan secara berulang sampai tidak ada perubahan anggota dalam masing-masing kelompok.

KNN atau K-Nearest Neighbour merupakan salah satu algoritma supervised learning yang mengklasifikasikan atau mengelompokkan data ke dalam beberapa kelompok berdasarkan kemiripan sifat dari data. Algoritma ini hampir mirip dengan algoritma K-Means, yang membedakan adalah pada K-Means melakukan proses clustering sedangkan pada KNN melakukan proses klasifikasi. Terkadang orang menyebut algoritma ini dengan sebutan algoritma malas dikarenakan pada algoritma ini tidak mempelajari cara mengkategorikan data akan tetapi hanya mengingat data yang sudah ada.

Contoh Machine Learning

Setelah memahami definisinya, ketahui lebih lanjut pembelajaran mesin dengan melihat contoh pembelajaran mesin. Berikut ini adalah beberapa contoh machine learning:

Misalkan kamu bekerja untuk perusahaan ecommerce dan tugas kamu adalah merekomendasikan produk kepada pelanggan berdasarkan riwayat pembelian mereka. Untuk melakukannya, kamu dapat menggunakan algoritma pembelajaran mesin untuk menganalisis data pelanggan dan mengidentifikasi pola dalam perilaku pembelian mereka. Algoritma kemudian dapat menggunakan pola ini untuk memprediksi produk mana yang paling mungkin diminati pelanggan dan merekomendasikannya.

Contoh machine learning lainnya adalah sebagai berikut:

Cara Kerja Machine Learning

Pada beberapa bagian sebelumnya kita telah mengenali beberapa algoritma machine learning. Agar lebih memahaminya sebaiknya kita mengetahui bagaimana cara kerja machine learning itu. Machine learning pada awalnya bekerja dengan cara belajar yang bertujuan untuk menghasilkan model tertentu. Model yang telah dibentuk itu nantinya akan menjadi informasi untuk pemecahan masalah baik dalam proses input maupun output. Kemudian model tersebut dapat memprediksi atau mengelompokkan data pada kedepannya.

Baca juga : Belajar Data Science: Pahami Penggunaan Machine Learning pada Python

Naive Bayes Classifier

Source: Koushiki Dasgupta Chauduri

Naive bayes classifier merupakan algoritma klasifikasi yang sangat sederhana berdasarkan apa yang disebut pada teorema bayesian. Algoritma ini memiliki satu sifat umum, yaitu setiap data diklasifikasikan tidak bergantung pada fitur lain yang terikat pada kelas atau biasa disebut dengan independen. Artinya, satu data tidak berdampak pada data yang lain.

Meskipun algoritma ini merupakan algoritma yang tergolong sederhana, namun naive bayes dapat mengalahkan beberapa metode klasifikasi yang lebih canggih. Algoritma ini biasa digunakan untuk deteksi spam dan klasifikasi dokumen teks.

Kelebihan algoritma ini adalah sederhana dan mudah diterapkan, tidak sensitif terhadap fitur yang tidak relevan, cepat, hanya membutuhkan sedikit data training, dan dapat digunakan untuk masalah klasifikasi multi-class dan biner.